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The vortex shedding and wake development of a two-dimensional viscous in- 
compressible flow generated by a circular cylinder which begins its rotation and 
translation impulsively in a stationary fluid is investigated by a hybrid vortex scheme 
at a Reynolds number of 1000. The rotational to translational speed ratio a varies from 
0 to 6. The method used to calculate the flow can be considered as a combination of 
the diffusion-vortex method and the vortex-in-cell method. More specifically, the full 
flow field is divided into two regions: near the body surface the diffusion-vortex 
method is used to solve the Navier-Stokes equations, while the vortex-in-cell method 
is used in the exterior inviscid domain. Being more efficient, the present computation 
scheme is capable of extending the computation to a much larger dimensionless time 
than those reported in the literature. 

The time-dependent pressure, shear stress and velocity distributions, the Strouhal 
number of vortex shedding as well as the mean lift, drag, moment and power 
coefficients are determined together with the streamline and vorticity flow patterns. 
When comparison is possible, the present computations are found to compare 
favourably with published experimental and numerical results. The present results 
seem to indicate the existence of a critical a value of about 2 when a closed streamline 
circulating around the cylinder begins to appear. Below this critical a, Kirmin vortex 
shedding exists, separation points can be found, the mean lift and drag coefficients and 
Strouhal number increase almost linearly with a. Above a x 2, the region enclosed by 
the dividing closed streamline grows in size, Karman vortex shedding ceases, the flow 
structure, pressure and shear stress distributions around the cylinder tend towards self- 
similarity with increase a, and lift and drag coefficients approach asymptotic values. 
The optimum lift to drag ratio occurs at a x 2. The present investigation confirms 
Prandtl’s postulation of the presence of limiting lift force at high a, and thus the 
usefulness of the Magnus effect in lift generation is limited. 

The results show that the present method can be used to calculate not only the global 
characteristics of the separated flow, but also the precise evolution with time of the fine 
structure of the flow field. 

1. Introduction 
The flow associated with a circular cylinder which begins its rotational and 

translational motion impulsively in a stationary fluid is a rather complex one. It 
includes the unsteady boundary layer separation flows which interact with the thin 
shear layers and wake flow, and generate complex unsteady lift and drag forces. When 
the ratio a of the rotational to translational speed is moderately high, a Khrman vortex 
street, Gortler-type vortices and Taylor vortices are generated at the same time (Matsui 
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1982). In particular, when the ratio is greater than a certain limiting value, Coutanceau 
& Minard (1985) found that K5rmin vortex street disappeared entirely during the 
early stage of their experiment. The fact that the unsteady features of the wake flow are 
still not fully understood has attracted both experimental and theoretical interest for 
a long time because of the considerable practical application of controlling moving- 
surface boundary layer separation to increase lift and reduce drag at high Reynolds 
numbers (Prandtl 1925; Prandtl & Tietjens 1934; Swanson 1961 ; Schlichting 1968; 
Tennant 1976). Moving all or part of a body surface also has applications in active or 
feedback control of vortex shedding, with important consequences for wake 
modification and the reduction of flow-induced vibration in offshore engineering (Gad- 
el-Hak & Bushnell 1991; Modi, Dobric & Yokomiz 1993; Chen, Ou & Pearlstein 
1993). 

Several experimental and numerical studies on flow past a rotating cylinder have 
already been conducted. The earliest visual experiments of flow past a rotating cylinder 
were carried out by Prandtl(l925). He argued that the maximum lift coefficient which 
could be realized by rotating the cylinder in free stream flow is 47t. Similar work was 
carried out later by Prandtl & Tietjens (1934). The experimental investigation of the 
complex flow field, especially the pressure distribution around the cylinder, is difficult 
to carry out because of the cylinder’s rotation and the limitation of experimental 
equipment. Swanson (196 1) overcame the difficulties of pressure measurements around 
the rotating cylinder by measuring the lift and drag forces directly. He found that there 
is a pronounced Reynolds number dependence of lift and drag forces in the region 
where the velocity ratio a is smaller than 1. Ludwig (1964) measured the velocity 
profiles of steady separation on a rotating cylinder for various low a in the range 
a < 0.3. A criterion for laminar separation on a wall, which is applicable when the 
wall is either stationary or moving upstream or downstream, can be formulated from 
the experimental data. This criterion is defined and adopted in 54.3. Ludwig found that 
the position of laminar separation on the downstream-moving wall of the cylinder is 
linearly dependent on the velocity ratio a. Peller (1986) investigated the steady 
separation on a heated and rotating cylinder in cross-flow at subcritical Reynolds 
number. His measured two-dimensional boundary layer profiles are similar to those 
obtained by Ludwig (1964). Chew (1987) measured the pressure distributions around 
a rotating cylinder directly by using a single pressure transducer with mercury slip ring 
and the ensemble-averaging technique. The results clearly indicate the shift in mean 
separation locations in the direction of rotation, the shift in stagnation location against 
the direction of rotation, and the asymmetry of mean pressure distribution around the 
cylinder which results in increasing lift force with increasing a. Recently, a method 
for estimating the mean lift of a rotating cylinder in uniform flow was presented 
by Tokumaru & Dimotakis (1993) for Reynolds numbers Re = 3.8 x lo3. Their 
determination of the mean lift is based on an inviscid point-vortex model and the 
transverse velocity measured experimentally ahead of the cylinder. Their results 
showed that large a yields higher lift coefficients for a cylinder rotating at constant 
speed. They reported that when a < 1, the lift coefficients they estimated are higher 
than the results of Reid (1924). At larger values of a > 5 ,  the maximum lift coefficients 
exceed 47t (the limiting magnitude suggested by Prandtl 1925) by more than 20%. 
Tokumaru & Dimotakis’ results also show that although the lift coefficient increases 
with a, the rate of increase becomes gradually smaller as a exceeds 4. 

In view of the experimental difficulties, the solutions of the Navier-Stokes equations 
using analytical and computational methods provide an excellent alternative 
description of the viscous fluid motions. The earlier analytical studies concerning 
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steady flow were carried out by Wood (1957), Moore (1957) and Glauert (1957). Their 
studies indicated that, for sufficiently high a, it is possible to use the method of matched 
expansions to obtain steady flows without vortex shedding at both high and low 
Reynolds numbers Re (based on the cylinder diameter and the magnitude of the 
velocity at infinity). More recently, using a power series method, the steady-state limit 
of the solution of the time-dependent Navier-Stokes equations together with a 
verification obtained from the steady-state equation was obtained by Badr, Dennis & 
Young (1989) for low Reynolds numbers and small a. They found that when the 
cylinder starts moving impulsively from rest, the flow approaches a steady state after 
a sufficiently long time for the low Reynolds numbers situation, but at a higher 
Reynolds number of 60, the flow does not tend to a steady state but instead develops 
a periodic pattern of vortex shedding. However, Tang & Ingham (1991) extended the 
Reynolds number range up to 100, but did not observe the periodic pattern of vortex 
shedding. On the other hand, using both Fourier analysis and experimental flow 
visualization, the unsteady flow past a circular cylinder which begins translational and 
rotational motion impulsively from rest in a viscous fluid was investigated by Badr & 
Dennis (1985) and Badr et al. (1990) for Re = 200, 500 and lo3 d Re < lo4 and for a 
in the range of 0.5 to 3. With the exception of the case with the highest a (= 3), the flow 
structure estimated by numerical calculation was found to be in excellent agreement 
with the experimental results. When a = 3 and at dimensionless time t > 10, they 
found that the three-dimensional effects become more pronounced in the experiments 
and the laminar flow breaks down, while the calculated flow starts to approach a steady 
state. For the quite wide range of Re from lo3 to lo6 and the a range of 0 to 2, the initial 
stage of the flow past a rotating circular cylinder has been studied by Chang & Chern 
(1 99 1 b) using a hybrid vortex method which consists of solving the Poisson’s equation 
for the stream function and the viscous vorticity transport equation by interlacing a 
finite-difference method for viscous diffusion and a vortex-in-cell algorithm for 
convection. 

However, the common points of interest of these unsteady flow investigations are the 
initial structure of vortex formation and shedding in the near-wake flow within a 
certain Reynolds number and a range. The numerical studies are mostly limited to flows 
over a short time and so cannot investigate fully the complete structure of flow field as 
well as the global characteristics of the wake in a fully developed flow. At low Reynolds 
number, the development of the wake behind a circular cylinder impulsively started 
into rotational and translational motion has been studied computationally by Chen et 
al. (1993) over a longer period of time. Their results indicate that at Re = 200, shedding 
of more than one vortex still occurs at a = 3.25, which is contrary to the finding of 
Coutanceau & Menard (1985). 

The present paper presents results for vortex shedding and the full development of 
the wake behind a rotating cylinder at higher Reynolds number and over a much wider 
range of a. It is well known that for high Reynolds number flow past a circular 
cylinder, the effects of viscosity are generally limited to the thin boundary layers on the 
cylinder and wake behind it. Thus, the distribution of vorticity in the field is sufficiently 
compact for its idealization in terms of singularities embedded in an otherwise inviscid 
domain. The higher the Reynolds number, the more compact are the regions of 
vorticity, so that the real flow can be simulated by a discrete vortex blob distributed 
in the flow field. The discrete-vortex method is capable of predicting effectively the 
global features of unsteady separated flow and the flow field far from the cylinder. An 
excellent review on this method has been written by Sarpkaya (1989). Other researchers 
(Kimura & Tsutahara 1987; Cheng, Ling & Zhuang 1990; Chew, Cheng & Luo 1993) 
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have studied the flow past a rotating circular cylinder using the discrete-vortex model 
combined with boundary layer theory and the diffusion-vortex model for a small 
rotational parameter. The results showed that the vortex method is both simple and 
efficient for predicting lift and drag forces that are consistent with the experimental 
results reported by Swanson (1961) and Ludwig (1964). Similarly, in the present paper, 
the vortex shedding and wake development is simulated by a hybrid vortex scheme: a 
combination of the diffusion-vortex method proposed by Lu & Ross (1991) and the 
vortex-in-cell method developed by Christiansen (1973). More specifically, the full flow 
field is divided into two regions. In the region near the body surface the diffusion- 
vortex method is used to solve the Navier-Stokes equations, while the vortex-in-cell 
method is used in the exterior domain. Being more efficient, the present computation 
scheme can extend the computation to a much larger dimensionless time than those 
schemes used by other researchers (Badr et al. 1990; Chang & Chern 1991 b ;  Chen et 
al. 1993). The present calculation will throw some light on the unsteady separation, the 
development of a periodic pattern of vortex shedding associated with the Karman 
vortex street behind a rotating cylinder at high Reynolds number, the relation between 
the Strouhal number of vortex shedding and rotational parameter a, the pressure 
distributions around the rotating cylinder as well as the forces acting on it at different 
values of the rotational parameter. 

2. Physical equations and boundary conditions 
In the present analysis the flow is assumed to be two-dimensional, viscous and 

incompressible. The origin of the frame of reference (?, 0) coincides with the centre of 
the cylinder which rotates about its axis in the counterclockwise direction with a 
constant angular velocity 5, as shown in figure 20. The directions of positive om7 5, r" 
and 0 are also as shown. 

The flow is governed by the continuity and Navier-Stokes equations. They can be 
written as 

v-ii = 0, 

-+(ii .V)E aii = -,vP"+vwii. 1 

a? P 

The stream function (4) and vorticity (0 can be obtained from (1) and (2): 

v27J = -[* 

The relations of stream function and vorticity with velocity ii are 

ii = V x ($k), 

[k = V x ii. 

Dimensionless variables are defined according to 

where the tilde denotes the dimensional variables, r" and 19 are the usual cylindrical polar 
coordinates, v" is the kinematic viscosity, fis the time, k is a unit vector in the direction 
of the cylinder axis, fim is the velocity at infinity, and d is the radius of the cylinder. 
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In order to emphasize the region near the wall r = 1 ,  it is convenient to introduce the 
transformation 

and equations (3) and (4) can then be written in dimensionless form as 
c = In r, (8) 

The boundary conditions for t 3 0 for equations (9) and (10) are 

+lf=o = 0, 

( a $ / a a f = "  = 4 

to be given, and 

3. Calculation method 
3.1. The hybrid vortex algorithm 

It is well known that the vorticity transport equation (9) represents the two 
mechanisms of vorticity diffusion and vorticity convection which occur simultaneously. 
For high Reynolds number flow, following Chorin (1973), the time integration may be 
broken into two fractional steps: pure diffusion and inviscid convection, in order to 
simplify the problem. Thus, during time step At, the pure linear diffusion equation 

and the inviscid convection equation 

are solved separately. 
In order t o  effectively solve (1 7) and (18) by applying the hybrid vortex scheme, the 

full flow field is covered by a net of mesh points, and is divided into two regions. 
Region 1 (0 6 t < &) is the layer with thickness of O(6) near the cylinder surface, 
where 6 is the boundary layer thickness on the surface of the cylinder. The thickness of 
region 1 is estimated from the flat-plate boundary layer thickness (constant (n/Re)"', 
Schlichting 1968). Region 2 (5, d ij d tm) is the slightly viscous flow region outside the 
region 1 extending to infinity. 

In region 1, the flow is viscous, the vorticity produced at the wall is carried away by 
convection and diffusion, flow separation occurs and there is large deformation of 
streamlines. These processes determine the entire flow field which in turn controls the 
production of vorticity. The diffusion-vortex method is used to simulate the unsteady 
flow field near the wall, since it not only avoids the difficulties in cut-off properties of 
the vortices but also reduces the CPU time required (Lu & Ross 1991). 

When the vorticity distribution at time to is known, the vorticity field 6 at to + A t  can 
be determined by applying the diffusion-vortex method. In other words, each vortex 
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diffuses during At to spread its vorticity in a Gaussian distribution to all the mesh 
points. By summing all contributions, new vortices are created at the mesh points 
after each time step At. They are then convected according to equation (18). The 
detailed process will be given later. The redistribution of vorticity to the mesh 
points at each time step can cause numerical diffusion. However, when mesh length 
h(h = max (Ar, rA8)) satisfies the condition h d 1 .756(At/Re)1/2 which is maintained 
in the present computation, the error generated by the vorticity redistribution is 
of O(10-5). The detailed proof is given by Lu & Ross (1991). 

In region 2, the effects of viscosity can be neglected for high Reynolds number. 
Therefore, the flow far away from the cylinder can be approximated as inviscid 
potential flow and can undergo only convection and deformation according to 
equation (18). This will be examined further in $4. The convection of a vortex is 
calculated using the vortex-in-cell method. Namely, when a vortex with a certain 
strength reaches its new location, it contributes incremental vorticity to the four 
surrounding mesh points according to the area-weighting scheme. In contrast to the 
usual Lagrangian vortex methods, these vortices move only one time step. This process 
of vorticity redistribution introduces a pseudo-viscosity into the flow, but it may be 
regarded as an advantage for it stabilizes the velocity field calculation (Sarpkaya 1989). 
The numerical diffusion is more significant in the far wake, but the influence on the 
vortex shedding frequency, lift and drag force is small when fine meshes are used in the 
computation. 

The velocity of the convection motion is determined via the stream function by 
solving the Poisson equation (10) together with the boundary conditions (1 l), (13) and 
(14). After vorticity is redistributed to replace the initial vorticity field, the calculation 
procedure is repeated until the end of the time period of interest. 

3.2. Initial vorticity condition 

Since the diffusion equation is being solved in region 1 ,  it is necessary to know the 
initial vorticity distribution. The vorticity is initially confined to an infinitesimally thin 
region surrounding the cylinder surface. The asymptotic formula given by Badr & 
Dennis (1985) is taken as the initial distribution of vorticity: 

$=o FZ { CL (p 2 A  - 2) + ($ + A )  sin 8 + (2.7844A -- l 6  ) a t c o s e  
3n3I2 

and 

where 
& > O  = 0, 

A = (8t/Re)li2. 

3.3. The vorticity distribution after a lapse of time 
In region 1 near the surface of the cylinder, the vorticity distribution is determined by 
equation (17). Let us consider the vorticity diffusion equation, with the initial 
distribution c0(r, 8, to) at time to and given Q(t) along the boundary: 
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The solution of (22), (23) and (24) at time & + A t  can be written as (Barton 1989) 

2 ofAt 

G<,,(r', el, to) r' dr' dB' -- ReL0 d7/L5,gl,dLy (25) 

where G is the appropriate Green's function, defined by 

aG 2 
- = -V2G + 6(r - r') S(0- 0') S(t- T ) ,  
at Re 

GI, = 0 (t > 7 )  (27) 

and aG/anl, indicates the derivative in the direction normal to the surface B. 
For high Reynolds number flow, one can use the flat-plate solution as an 

approximation to the solution when the wall boundary is divided into very short 
segments. Therefore, the diffusion process of a continuous vorticity field in region 1 can 
be written as 

where 

1 + e2t- 2eccos (e - el) 
4Aty2 

[I -egcos(e-e')]exp 
4 

The flow in region 2 is approximated as inviscid potential flow. The vorticity is 
conserved when the vortex is in motion. The distribution of vorticity can be calculated 
using the vortex-in-cell method: when a vortex with strength r reaches its new 
location, it contributes incremental vorticity < to the four surrounding mesh points 
according to the area-weighting scheme. The corresponding vorticity distribution on 
grid nodes is 

(34) &=Gr ( i =  1,2,3,4), 
A 
A 

where A is the grid cell area and A,  is the area opposite the ith node. 

3.4. Convection simulation 
After the vorticity distribution at each mesh point (t,,Si) at time t is calculated, the 
velocity is determined via the stream function by solving the Poisson equation (10) 
together with the boundary conditions (ll),  (13) and (14). Here (10) will be solved by 
a subroutine (FPS2H), available from the IMSL mathematical package, for solving 
Poisson equations. The subroutine is based on representing the elliptic equation in 
finite-difference form using a method developed by Lynch & Rice (1978) and known 
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as the HODIE (high order difference approximation with identity expansion) method. 
The resulting system of linear algebraic equations is solved using fast-Fourier- 
transform techniques (Boisvert 1984). The stream function $ is related to the velocity 
components through 

v, = e-ca$/do, ( 3 5 )  

V,  = -e-ca$/ag (36) 

According to equation (lS), the vortex at each mesh point is displaced after a time 
interval At to the location 

r(t + At) = r(t)  +;[3u,(t+ At)  -u,(t)]  At,  (37) 

(38) 
1 

B(t+At) = 8(t)+-[3u,( t+At)-v0(t)]At .  
2 4 4  

3.5. Vorticity distribution on the cylinder surface for  the next time step 
The vorticity boundary condition is determined from the Poisson equation (lo), and 
a second-order formula is proposed : 

(39) 
6CWL 0, 0 + aAQ + W&, 0 ,o  A 2 t  

2A2.5 51+n = - 

3.6. Calculation of force coeficients 
The lift, drag, moment and power coefficients are defined according to 

where L", fi and a are the lift, drag and moment exerted by the fluid on unit length of 
the rotating cylinder, fi is the power needed to maintain the rotation of the cylinder, 
and is the fluid density. 

The velocity and vorticity at time t obtained by the computation can be used to 
calculate the pressure and shear stress distributions on the surface of the cylinder, 
namely 

where p", is the static pressure at infinity. 

obtained from the following integration: 
The pressure and the shear stress components of the drag and lift coefficients are 

1 2= 
C ,  cos 8 do, C,, = - (43 a, b) lo C ,  sin 8 d8, 

1 2= 
C,, sin 0 do, C,,, = (444 b) Jo C,, cos 0 do. 

The total drag and lift coefficients are given by 

c, = c,, + c,,,, c, = c,, + c,,. (45 a, b) 
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The moment and power coefficient are similarly obtained from the following 
integration : 

aC, do. C, = C,d0, C, = -Tlo 1 2n 1 2n 

4. Results and discussion 
The numerical calculation of the flow past a rotating circular cylinder is carried out 

for Re = 1000 and the rotational to translational speed ratio a in the range 0 < a < 6 
on an IBM 3090 mainframe computer. The total computation domain has been 
limited to 5, = 3n/2. In the present calculation region 1 corresponds to 0 < 6 < 0.4 
and region 2 to 0.4 Q Q 6,. The influence of the number of grid points and the size 
of region 1 have been checked for the lift and drag coefficients. It is found that the lift 
and drag coefficients decrease with increasing size of region 1, but the change is very 
small. When region 1 increases from 0 d 6 d 0.2 to 0 < 6 < 0.8, the mean values of lift 
and drag coefficients decrease by about 5%. However, the lift and drag coefficients 
increase with increasing the number of grid points. When the nodes increase from 
I x J = 129 x 257 to 257 x 51 3 (where I and J are the number of basic grid points in the 
6- and 0-directions respectively), the lift and drag coefficients increase by about 6 % and 
8 YO, respectively. When the nodes increases from I x J = 257 x 5 13 to 5 13 x 5 13, the lift 
and drag coefficients only increase by less than 2 %. It is found that a grid system of 
I x  J = 257 x 513 nodes is sufficient and is adopted for all subsequent computation. 
The calculation for this problem starts at to = 0.001, using the asymptotic formula 
given by Badr & Dennis (1985) (equations (19)-(21)). In the calculation, the vorticity 
on the cylinder is sensitive to the grid size at rotational parameter a > 1. Since the 
diffusion and convection are calculated separately in the present method, the vorticity 
transfer not only depends on the grid size but also on the size of the time step At. On 
the basis of convection stability considerations, the non-dimensional time step is 
chosen as At = 0.02 when a d 1, and At = 2.4A.iJa when a > 1. The CPU time 
required for each time step is about 2.8 s. 

As a further simple check on the numerical scheme, during the calculation, it is 
found that the rate of change of the net sum of circulation on the cylinder surface 
remains approximately zero in finite time 

This is consistent with the surface condition presented by Stansby & Smith (1991). 

4.1. The vortex shedding and wake evolution 
The streamlines around the cylinder for a = 0 at different times are shown in figures 
1 and 2. A comparison with the results of Chang & Chern (1991 a) for Re = 1000 from 
t = 1 to 6,  is given in figure 1 (a-d) in order to provide an independent verification of 
the present calculation method. In figure 1, since the flow is symmetrical about the line 
8 = 0", only one half of each flow will be shown. The values of streamlines plotted are 

0.65 and 1.3. Generally, agreement between the results obtained by the two methods 
is good. Both show the elongation with time of the main vortex and the appearance of 
a secondary vortex near the separation point at time t = 3. The secondary vortex grows 

-0.4, -0.2, -0.1, -0.05, -0.025, -0.012, 0.001, 0.008, 0.02, 0.04, 0.08, 0.15, 0.3, 
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Present Chang & Chern (1 99 1 a) 

FIGURE 1. Comparison of the development of streamline patterns from two numerical methods 
for Re = 1000, CL = 0 at times (a) t = 1, (b) t = 2, (c) t = 3, ( d )  t = 6. 

FIGURE 2.  Patterns of instantaneous streamlines during half a cycle of vortex shedding for a = 0. 
(a) t = 55, (b)  t = 60. 

in size until it touches the boundary of the main recirculation zone, and splits the main 
vortex into two parts. Two secondary vortices emerge near the separation location and 
constitute the so-called a-phenomenon at t = 6. One can find from figure 1 that the 
dimensionless wake lengths at t = 1, 2, 3 and 6 are 0.22, 0.5, 0.8 and 1.8 respectively, 
in good agreement with the results of Ta Phuoc Loc (1980). In addition, comparison 
of the time evolution of vorticity distribution over the surface of the cylinder with the 
analytic results of Bar-Lev & Yang (1975) and Collins & Dennis (1973) have been 



Flow past a rotating circular cylinder 45 

I l l  I ,  ,::-.*s\ .-. I % 3 Q ... 
( , ( I  I , I I  

I * I I ,  

* ,  4 . 3  _ ,  
(b) 

, I .  ~ .~ 

_ . _  
- . - - ,  
. - -  

FIGURE 3. Vorticity contours at several time instants during half a cycle of vortex shedding for CL = 0. 
(a) t = 55, (b) t = 60. Dashed (solid) lines represent constant positive (negative) vorticity values, in 
this and subsequent figures. 

carried out for Re = 1000. It is found that the present results are also in good 
agreement with their results for the early stages of the flow. 

In numerical calculations of such a flow, there are no destabilizing effects except for 
the numerical errors. Since the geometry of the flow domain and the boundary 
conditions are symmetrical, the solution of the equations is also symmetrical. This 
happens in the present case. Therefore an initial perturbation to the wake is required 
in order to initiate the alternate vortex shedding. In the present study, a rotation of the 
cylinder is imposed for a short duration to provide the initial perturbation. After a 
period of evolution, a periodic wake called the von Kirman vortex street appears at 
t > 25 as shown in figure 2(a, b). 

Figure 3 shows the vorticity contours at several time instants during half a cycle of 
vortex shedding. Whilst the vortex on one side is being shed, the one on the other side 
is reforming. It is well known that flow around a fixed circular cylinder may remain 
highly two-dimensional only up to a Reynolds number of 200 (Williamson 1989) owing 
to the perturbation in the real flow. At high Reynolds number, real flow will only 
remain two-dimensional in the starting flow for a limited time. In the present two- 
dimensional numerical simulation, some long time simulations are also conducted to 
obtain frequency information on vortex shedding. For example, when a = 0 in figure 
3, the alternating vortices with the same strength advance downstream and the 
dimensionless vortex shedding frequencyfis equal to 0.103, wheref = 1/T and Tis the 
dimensionless period of vortex shedding. The Strouhal number St is related to f by 
St = 2J and at Re = 1000, St obtained by Roshko (1954) in his experiment is about 
0.21 o r f =  0.105. 

The patterns of instantaneous streamlines for a = 0.5 at different times are shown in 
figures 4 and 5. In figure 4, the present results are shown next to those of Badr et al. 
(1990) for Re = 1000. Figure 4(a) shows the existence of the first vortex and a bulging 
of streamlines near the right lower side of the cylinder at the beginning of impulsively 
started motion. The first vortex grows gradually in the upper wake while the bulge 
leads to the formation of the second vortex as shown in figure 4(b). At t = 3, a 
secondary vortex appears near the cylinder in the neighbourhood of the second vortex 
(figure 4c) and this secondary vortex is still present at t = 4 as shown in figure 4(d ) .  
It should be noted in figure 4 that the initial perturbation was not added artificially. 
The rotation creates asymmetry in the formation of wake flow behind the cylinder. The 
streamline patterns compare favourably with the results of Badr et al. (1990). After a 
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FIGURE 4(a,b) .  For caption see facing page 

longer time, alternating vortices are shed from the upper and lower sides of the cylinder 
as shown in figure 5.  As the shed vortices steadily move away from the cylinder in the 
downstream direction, streamlines show a periodic fluctuation that looks like a 
travelling wave. One interesting feature that is found in the present results is that as 
time advances the secondary vortex still appears periodically as shown in figures 5(a) 
and 5(c). It appears as a small companion vortex to the main vortex at the lower side 
of the cylinder. Furthermore, the vortex structures formed on the upper side of the 
cylinder as shown in figures 5 (b) and 5 ( d )  are different from that formed on the lower 
side of the cylinder as observed in figures 5(a) and 5(c). This is because, owing to the 
anticlockwise rotation of the cylinder, vorticity of opposite sign is generated which 
diffuses into and weakens the secondary vortex on the upper side, and creates the 
companion secondary vortex on the lower side. The secondary vortices generated 
during the transient stage are of opposite vorticity to the main vortices, i.e. 
anticlockwise on the upper side and clockwise on the lower side. The relative velocity 
between the moving cylinder surface and the flow in these secondary vortices tends to 
decrease the strength of the secondary vortex on the upper side and increase it on the 
lower side. Figure 6 shows the vorticity contours at different time during two cycles of 
vortex shedding for a = 0.5. When t = 8 (figure 6a), the first vortex (a negative or 
clockwise vortex) is shed from the upper side of the cylinder. The second vortex (a 
positive or anticlockwise vortex) is shed from the lower side of the cylinder at t = 12 
(figure 6b) .  It takes about 19 dimensionless times for two cycles of vortex shedding to 
be completed. The mean value of the vortex shedding frequency estimated from 10 
vortex shedding cycles i s f=  0.108, and the corresponding Strouhal number is 0.216. 

When CL = 1, the pattern of streamline evolution is found to be basically the same as 
for a = 0.5. However, the positive vortex is formed in the 0" < 8 < 90" region and, 
when fully formed, is shed and then moves away from that region. A highly regular 



Flow past a rotating circular cylinder 

(4 
Present 

Badr et al. (1990) 
C '  

Badr et al. (1990) 

47 

FIGURE 4. Comparison of the development of streamline patterns from two numerical methods and 
experimental flow visualization for 01 = 0.5 at times (a) t = 1, (b) t = 2, (c)  t = 3, ( d )  t = 4. 

fluctuation is shown in figure 7. The companion secondary vortex associated with the 
main vortex on the lower side is also highly visible in figures 7(a) and 7(c), while none 
is found on the upper side. Figure 8 shows time sequences of vorticity contours 
covering two cycles of vortex sheddings for 01 = 1: the first vortex is shed at t = 7 
(figure 8a)  and the third vortex is shed at t = 16 (figure 8 c ) ;  the phenomenon is 
repeated about every 9 dimensionless time periods. The mean vortex shedding 
frequency estimated from 10 vortex shedding cycles is f = 0.1 15, and the corresponding 
Strouhal number is 0.23. Another interesting phenomenon that can be observed is that 
the vortices shed from the upper side are stronger than those from the lower side of the 
cylinder in starting flow only for a limited time. This phenomenon is also present in the 
results of Chen et al. (1993) at Re = 200. It should be noted in the present results that 
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FIGURE 5. Patterns of instantaneous streamlines during two cycles of vortex shedding for OL = 0.5. 
(a) t = 8, (b) t = 12, (c) t = 17, (d )  f = 21. 

FIGURE 6. Vorticity contours at several time instants during two cycles of vortex shedding for 
a = 0.5. (a) t = 8, (b)  t = 12, (c) t = 17, ( d )  t = 21. 
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FIGURE 7.  Patterns of instantaneous streamlines during two cycles of vortex shedding for a = 1 .  
(a) t = 7, (b)  t = 12, (c) t = 17, ( d )  t = 21. 
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FIGURE 8. Vorticity contours at several time instants during two cycles of vortex shedding for 
a = 1. (a) t = 7, (b) t = 12, (c) t = 17, ( d )  t = 21. 
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FIGURE 9. Patterns of instantaneous streamlines during two cycles of vortex shedding for a = 2. 
(a) t = 10, (h)  t = 15, (c) t = 20, (d) t = 25.  

this difference in vorticity strength decreases with increasing time. This is expected 
since the net vorticity shed must be equal and opposite to the circulation around the 
circular cylinder induced by its rotation in order to satisfy Kelvin’s circulation 
theorem. The net circulation around the cylinder is positive and thus the clockwise 
negative vortex shed from the upper side is stronger than the anticlockwise positive 
vortex shed from the lower side of the cylinder in the starting flows for a limited time. 
As vorticity is generated at a solid wall, an alternative view is that the opposing motion 
between the moving wall and the fluid on the upper side generates much stronger 
negative vorticity than the positive vorticity from the lower side where the relative 
velocity between the wall and fluid is smaller in the starting flows for a limited time. 
Owing to viscous effects, the relative velocity decreases with increasing time so that the 
circulation shed into the wake approaches a balance during one cycle of vortex 
shedding. This process can be seen in figure 23(c) from the time histories of lift and 
drag coefficients which are related to alternate vortex shedding. The lift amplitude 
associated with the first pair of vortices is much larger than for subsequent pairs which 
become uniform as time increases. 

Figure 9 shows the pattern of instantaneous streamlines over two cycles of vortex 
shedding for CI. = 2. For potential flow, the limiting case occurs at a = 2 when the front 
and back stagnation points coincide. Any further increase in a will result in the lifting 
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FIGURE 10. Vorticity contours at several time instants during two cycles of vortex shedding for 
a = 2. (a)  I = 10, (b) t = 15, (c) t = 20, ( d )  I = 25. 

of the dividing or closed streamline and stagnation point away from the cylinder’s 
surface. For viscous flow, the present study also found that when the peripheral speed 
of a rotating cylinder is greater than the maximum velocity around the cylinder induced 
by free-stream flow, the effect of rotation of the cylinder is much more dominant. When 
the first vortex is shed, the fluctuation of streamlines is relatively greater than when 
OL. = 0.5 and 1. After a period of transient evolution, the fluctuation of the wavy 
streamlines decreases. Similar to the a = 0.5 and 1 cases discussed earlier, the shedding 
of vortices from the two shear layers appears to be regular and alternate. However, the 
time taken for the first vortex to be shed is longer than when a d 1, and the average 
shedding frequency is estimated to be 0.122 and the corresponding Strouhal number 
0.244. Furthermore, the streamlines at the back of the cylinder are substantially 
deflected upward; and this feature continues progressively to a certain extent as time 
increases. It is observed that there are closed streamlines circulating around the 
rotating cylinder which divide the flow into inner and outer regions. In real flows this 
will lead to the formation of three-dimensional Taylor vortices (which is not simulated 
in the present two-dimensional study) in the inner region where the centrifugal effect 
is important (Matsui 1982). Although the wake is biased to the upper side in the near- 
wake region the streamline pattern is similar to that when a < 2 in the far-wake region. 

Figure 10 shows the vorticity contours at different time over two cycles of vortex 
shedding when a = 2. As in figure 8, there is a difference in vorticity strength between 
the vortices shed from the upper and lower sides of the cylinder in starting flow only 
for a limited time. It is quite clear that the increase in a tends to suppress the process 
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of positive vortex formation behind the cylinder. The present results are in good 
agreement with the numerical results of Badr et al. (1990). As a becomes larger, the 
meandering in the wake becomes smaller in amplitude and the frequency of vortices 
shed from the cylinder becomes larger. 

Patterns of instantaneous streamlines for a = 3 at different times are shown in 
figures 11 and 12. Figure 11 compares the evolution of the initial vortex structure of 
the present study and Badr et al. (1990) for the same Reynolds number Re = 1000. At 
t = 1, no vortices can be detected. At t = 2, a negative vortex is formed at the top of 
the cylinder and another negative vortex is formed in the region 90" < 8 < 180" after 
t = 3. These two vortices move in different directions, and as time increases one of the 
vortices is shed downstream, while the other migrates to the front part of the cylinder 
and disappears. This phenomenon has also been observed experimentally by Badr et 
al. (1990) which therefore supports the present computed results. For a = 3, the flow 
pattern of wavy streamlines of periodic fluctuation observed for a < 2 ceases to 
develop. 

The time taken for the first vortex to be shed is larger than that for a < 2. It can be 
seen in figures 12(a) and 12(b) that the attached vortex grows slowly until it becomes 
almost as large as the cylinder, before it is finally swept into the wake region by the free 
stream, as was also observed by Badr et al. (1990). The region of closed streamlines 
shown in figure 12 is much larger than when a = 2. It is further noted from figure 12 
that the flow field possesses only one stagnation point which is lifted away from the 
cylinder's surface. This phenomenon is similar to that reported by Badr et al. (1990), 
and the streamlines patterns are consistent with the flow patterns found experimentally 
in earlier studies by Prandtl & Tietjens (1934). 

Figure 13 shows the pattern of instantaneous vorticity contours for a: = 3. It is 
interesting to note that in the present case a periodic flow pattern does not develop with 
time, and the positive vortex and the negative vortex are shed at the same time. In other 
words, the negative vorticity shed engulfs and neutralizes the positive vorticity. The 
vortex shedding process becomes totally different from that for a < 2, and the vortices 
are only shed from the upper shear layer. As time increases, as predicted by Badr et al. 
(1990) the flow approaches a steady state. The present result differs from the case 
a > 2 at Re = 200 studied by Chen et al. (1993). Their results show that shedding of 
more than one vortex occurs at a = 3.25 and the shedding process is very different from 
that associated with the usual Karmin vortex street for a = 0. 

The present computation continues up to a = 6 which has not been reported 
previously by other researchers. For a = 4, the development of the flow structure with 
time is shown in figure 14. At t = 1, a negative vortex is formed in the region 
0" < 6' < 90". At t = 2, this vortex moves into the region 90" < 6' < 180" and 
disappears shortly after. The appearance of two negative vortices simultaneously on 
the upper side of the cylinder as observed in figure 11 (d) at CI = 3 does not occur in the 
present case. At t = 3, a second negative vortex is formed at the top of the cylinder, and 
as time increases, it grows and is then washed downstream. Patterns of streamlines 
should be compared with the case of a = 3. It will be seen that the development of flow 
is similar to the case of a = 3 after t > 5 except that the recirculating closed streamline 
region is larger and the stagnation point is lifted further away from the cylinder's 
surface. 

Figure 15 shows a sequence of flow patterns for cc = 6. The flow shows similar 
behaviour to the case of a = 4, except that no negative vortex appears in the 
region 90" < 8 < 180" at t < 3 as shown in figures 15(a) and 15(b). At t = 3, only one 
negative vortex is formed in the region 0" < 6' < 90". 
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FIGURE 1 I (a,b). For caption see page 55. 

It is found from the calculation that when a: is larger than 2, alternate vortex 
shedding does not take place and the conventional Ksirman vortex street disappears 
entirely. However, it should be emphasized that a starting negative vortex is being shed 
downstream when a 2 3 before a steady state is reached. This phenomenon is similar 
to the generation of starting vortex when a loaded airfoil moves impulsively in a 
stationary fluid. When the circulation is fully developed and remains constant around 
the airfoil, the shedding of the starting vortex ceases. Thus it can be inferred that the 
circulation around the present rotating cylinder must remain constant when the 
Karman vortex street disappears and some form of self-similarity in flow structure, 
pressure and shear stress distributions should exist. 

Figure 16 is a plot of the locus of the first vortex centre. The results show that the 
locus shifts upward and forward initially as a: increases before being swept downstream 
by the free stream. It is in agreement with the experiments of Badr et al. (1990) in the 
near wake. In the far wake the locus of the first vortex centre is parallel to the free 
stream. 

4.2. Kcirman vortex street behind a rotating cylinder 
The evolution of a Karmsin vortex street behind a rotating circular cylinder with 
increasing a is an important aspect of the present study. Figure 17 shows the 
instantaneous streamlines viewed from a frame that is fixed with respect to the 
undisturbed fluid. The multitude of vortices in a regular alternating arrangement is 
clearly distinguishable when a: is small. It is noted that the vortex pattern near the 
cylinder in figure 17(a) is very similar to that in figure 3(a) ,  and the attached vortices 
in figure 2(a)  are now masked by the velocity field in the near wake of the cylinder. On 
the other hand, in a frame translating with the cylinder the shed vortices are hidden in 
the oscillating wake as shown in figure 2(a) when compared to the case in figure 17(a) 
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FIGURE 1 1  (c,d). For caption see facing page. 

for the same value of t. Since an attached vortex translates with the cylinder, it can be 
clearly observed in a frame translating with the cylinder (Chen et af .  1993). However, 
after the vortex is shed into the fluid, its core, especially in the far wake, is essentially 
stationary with respect to the undisturbed fluid although it actually moves very slightly 
in the direction of the cylinder translation resulting in the wavy streamline pattern of 
the wake as observed in figure 2. Therefore, it is generally easier to observe shed 
vortices in a frame that is fixed with respect to the undisturbed fluid. 

The effects of the rotation in altering the vortex shedding seem to be as follows. 
When a = 0, the terminology ‘street’ refers to the multitude of vortices in a regular 
alternating arrangement. The streamwise spacing of the vortices remains approximately 
constant and the cross-stream spacing increases in the streamwise direction. The ratio 
of cross-stream to streamwise vortex spacing increase slowly with distance in the wake, 
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FIGURE 11. Comparison of the development of streamline patterns from two numerical methods and 
experimental flow visualization for CL = 3 at times (a) t = 1, (b)  t = 2 ,  ( c )  t = 3, (d )  t = 4, (e)  t = 6, 
(.f) t = 10. 

but this may be partially caused by the vortex diffusion of the grid numerical 
calculation. It is found that the region of constant positive streamlines around the 
cylinder decreases progressively when a increases and the region disappears completely 
when a is sufficiently high. When a d 2, periodic vortex shedding remains and forms 
the KBrman vortex in the wake as shown in figure 17(a-c). When a 2 3, there are no 
regular vortices in the wake. The exact behaviour is sensitive to the value of a in the 
region 2 < a < 3 and so it is difficult to obtain a critical value of a at which the Kirmin 
vortex street completely disappears. One can, however, find that the Khrman vortex 
street structure begins to deteriorate as soon as the peripheral velocity becomes greater 
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FIGURE 12. Patterns of instantaneous streamlines for a = 3 .  (a) t = 8, (h)  f = 20, (c) t = 50. 

FIGURE 13. Vorticity contours at several time instants for CL = 3 at times (a)  f = 10, (h) t = 20, 
( c )  = 50. 



Flow pasr N rotating circular cylinder 57 

FIGURE 14. Patterns of instantaneous streamlines for CL = 4. (a) t = 1, (h )  t = 2, (c) t = 3, 
( d )  t = 5 ,  (e )  t = 10, ( , f )  t = 20. 

than the maximum velocity on the cylinder induced by the free-stream velocity (i.e. 
c1 z 2) and finally disappears for c1 3 3. 

4.3. Detailed.features of the flow field 
A characteristic feature of flow around a circular cylinder that simultaneously rotates 
and translates in a stationary fluid is the asymmetric form of the velocity profiles, which 
vary according to the magnitude of 01. To demonstrate the validity of the present 
numerical results some of them for initial velocity profiles are compared with the 
experimental and numerical results of Badr et al. (1990) at 01 = 0.5. The present results 
as shown in figure 18 (a)  for radial velocity at 8 = 0" are in better agreement with Badr's 
experimental data than their own computed results. They also indicate quantitatively 
the growth in attached vortices with increasing t and the approaching of velocity 
towards the free-stream value with increasing r .  The radial and tangential velocity at 
0 = 90" in figure 18 (b, c) indicate that the strong shear region caused by the cylinder's 
rotation is limited to about 20% of the radial distance from the wall. 

Detailed velocity profiles around a rotating circular cylinder for a = 1 at the instants 
when a negative vortex is shed and when a positive vortex is shed are shown in figures 
19(a) and 19(b). For a = 6, when vortex shedding ceases the velocity profile at t = 20 
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FIGURE 15. Patterns of instantaneous streamlines for c( = 6, 
(a) t = 1 ,  (b) t = 3, (c) t = 5 ,  (d )  f = 10. 
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FIGURE 16. Comparison of computational and experimental results for the paths of the first vortex. 
-, Present calculation; ---, Badr et al. (1990)’s calculation; Badr et al. (1990)’s experiment: A, 
CL = 0.5; ., C( = 1 ;  0, c( = 2. 

is shown in figure 19(c). When a d 1, the overall velocity decreases and increases on 
the upper and the lower sides of the cylinder respectively because of the anticlockwise 
rotation of the cylinder. On the other hand, the velocities of the fluid relative to the wall 
increase with increasing a on the upper side of the cylinder whereas the opposite applies 
to the lower side. When a is sufficiently high, it is clearly seen from figure 19(c) that 
the fluid in a region near the surface is in enforced motion with the cylinder. As a: 
increases the region becomes larger, and the relative velocities of the fluid near the 
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FIGURE 17. Instantaneous streamlines viewed from a frame fixed with the undisturbed fluid. 
(a) a = 0, t =  5 5 ;  (b) a =  1, I = 50; (c)  a = 2, t =  50; ( d )  a =  3, t = 50; (e )  a = 4, t = 50. 

surface and the wall decrease with increasing a both on the upper and the lower sides 
of the cylinder. 

It is of interest to locate the flow separation point and stagnation point. It is well 
known that the criterion of vanishing wall shear is not necessarily a meaningful 
indication of separation in the case of a moving wall. In the present study, separation 
points are determined by the MRS condition (i.e. av,/ar = 0, and v, = v, = 0) (Ludwig 
1964; hove  1981), and the stagnation point is determined by the condition v, = vo = 0. 
It can be seen from figures 19(a) and 19(b) that the separation points marked by small 
circle in the flow do not occur at the wall, but at a certain height above it. On the upper 
side of the cylinder, the wall moves upstream. The velocity changes sign from positive 
to negative along the r-direction at the separation point, and flow separation occurs at 
a position where there is a relatively large region of near zero velocity. However, on the 
lower side of the cylinder, the wall moves downstream. The velocity is of the same sign 
along the r-direction near the separation point, which differs from that on the upper 
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FIGURE 18. Comparison of velocity profiles for ct = 0.5. (a) v, versus r at 6 = O", (b) u, versus r at 
6, = 90°, (c) uo versus r at 0 = 90". -, Present calculation; ---, Badr e t  ~ l .  (1990)'s calculation. 
Experiment points taken from Badr et al. (1990): 0,  t = 1; B, t = 2;  A, t = 3 ;  A, t = 4; 0, t = 5 .  

side. From calculation it is found that when a < 2, there are two separation points. 
When a >, 3, no separation point can be detected but one stagnation point exists. As 
a increases, the stagnation point moves away from the cylinder along the radial 
direction. 

The variations of mean positions of the front stagnation point and the separation 
points are plotted against a in figure 20. Here, the effects of rotation are clearly 
revealed. Both the separation points move along the anticlockwise direction of rotation 
with increasing a, with the rate of movement of the separation point on the lower side 
of cylinder being higher. In other words, the separation was delayed (moved 
downstream) when the wall moved in the direction of the flow and was advanced 
(moved upstream) when the wall moved opposite to the flow. The stagnation point 
however moves in the direction opposite to the rotation with increasing a. Its variation 
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FIGURE 19. Velocity distribution around the cylinder. (a) and (b)  DL = 1, t = 7 and t = 12 (during 
one cycle of vortex shedding); (c) ct = 6, t = 20. 

180 

120 - 

-120 1 1 1 1 1 1 
0 1 2 3 4 5  

a 

FIGURE 20. The variation of the stagnation point and the separation points with a. -+-, 
Stagnation point So;--++, top separation point S,  ; +, bottom separation point S,. 
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with a taper off at high a as the flow structure become self-similar. The results agree 
with the experimental observations of Ludwig (1964) and Chew (1987). 

For a 6 2, the wake region as demarcated by the two separation points decreases 
with increasing a. The narrowing of the wake, together with the shift of separation 
points and stagnation point leading to increased circulation around the cylinder with 
increasing a, seems to indicate that the rotation of circular cylinder can impart 
circulation to the fluid indefinitely within this range of a investigated. It must 
necessarily imply the increase in lift force with increasing a in accordance with 
Kutta-Joukowski's theorem. 

4.4. Surface pressure and friction drag distribution 
Figure 21 shows the variation of the calculated pressure coefficient C, on the surface 
of the cylinder, which has not been computed by previous researchers. The dashed lines 
represent the instantaneous pressure distribution at different instances within a 
shedding cycle and the solid line represents the mean value over five cycles. Because 
vortices can be associated with a region of low pressure, their formation and 
subsequent shedding causes the pressure on the side of the cylinder to vary in a 
cyclic manner. This figure clearly indicates that as a increases, the pressure increases 
on the side of the cylinder where relative velocity is high and decreases on the other side 
of the cylinder, resulting in an increase in lift with increasing a. 

For a stationary circular cylinder, the boundary layers separate after experiencing a 
region of adverse pressure gradient. However, the present study shows that even at as 
low as a = 0.5, the adverse pressure gradient region on the upper half of the cylinder 
disappears and that on the lower half increases with increasing a. It also shows that the 
disappearance of, or increase in, the adverse pressure gradient region is not associated 
with a delay or early separation of the boundary layer as commonly found in the case 
of flow past a stationary cylinder. In a rotating cylinder, the wall is moving in the 
direction of the flow on the lower half of the cylinder. This imparts momentum to the 
boundary layer and delays separation even though it is subjected to a large adverse 
pressure gradient region. On the upper half of the cylinder, the opposing motion of the 
wall and fluid slows down the boundary layer and promotes early separation even 
though an adverse pressure gradient is absent. The underlying factor seems to be 
whether the imparting of momentum by the moving wall or dissipation of momentum 
by the adverse pressure gradient to the boundary layer is more dominant. 

The minimum suction pressure on the lower half of the cylinder increases with 
increasing a and reaches - 17.5 at a = 6.  Its position also shifts towards the rear of the 
cylinder as a increases beyond 0.5. At a 2 2, it is at /3 z 240" (,!" = 180'-0) and 
constitutes a large increase in drag. 

Another interesting feature to note is that the stagnation pressure coefficient reduces 
from 1 as a increases. At a = 2 when a closed streamline circulating around the 
cylinder can be observed, it becomes less than zero. For a 3 2, the pressure coefficient 
is negative everywhere on the cylinder's surface and demonstrates the strong centrifugal 
effect caused by the cylinder rotation on the flow. There is a strong similarity between 
the pressure distribution curves at a 2 3 (figure 21 e , f ) .  The maximum and minimum 
pressure locations are at p M 30" and 240" respectively and the range of C ,  variation 
is about 6.5. The stronger centrifugal effect at a = 6 than at a = 3 merely shifts the 
entire pressure distribution towards the more negative direction by about 10 units. The 
results indicate that for a > 2 when vortex shedding ceases and closed streamlines 
circulating around the cylinder are formed, the two-dimensional flow structure 
approaches some form of self-similarity (see streamline patterns at large t for a 2 3 in 
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FIGURE 21. Pressure distribution on the surface of the cylinder (a) a =  0; (b) a = 0.5; (c)  a = 1; ( d )  
CL = 2;  (e)  a = 3; cf) u = 6 .  ---, Positive vortex shedding; ---, negative vortex shedding; -, 
mean value (over five cycles of vortex shedding for CL < 2). 

figures 12, 14 and 15) which manifests itself as a similarity in pressure distribution. The 
similarity in pressure distribution will lead to asymptotic values of the mean lift and 
drag coefficients CL and C, at high a, which trend is discussed in $4.5. 

Figure 22 shows the variation of the mean shear stress distribution of the surface of 
the cylinder at different a. The distribution is observed to be antisymmetric at a = 0. 
At non-zero a, the magnitude of mean shear stress increases and decreases with 
increasing a on the upper and lower sides of the cylinder respectively which is 
consistent with the variation in relative velocity between the fluid and the cylinder. The 
approximately constant shear stress region in the wake of cylinder for a < 2 can also 
be observed. The tendency towards similarity in shear stress at a = 3, 4 and 6 also 
supports the previous argument that the flow structure approaches some form of self- 
similarity. Another point to note is the limiting value of mean shear stress at -0.12 at 
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FIGURE 22. Mean shear stress distribution on the surface of the cylinder at different a. 

high a. It seems that the growth in the recirculating region with a imposes a fixed 
velocity gradient at the wall even though the cylinder is rotating faster. 

4.5. The time histories of 1iJt and drag coeflcients 
One of the central problems for computational fluid dynamicists is to accurately 
predict aerodynamic loads. The time histories of total lift and drag coefficients C,, C,, 
their pressure components C,,, C,, and their friction components CLr, C,,.are shown 
in figure 23. When a = 0, the mean fluctuation amplitude of the lift coefficient c,,,, 
is 1.1, which is higher than the = 0.8 reported by Ling, Ling & Wang (1992) and is 
in close agreement with the z 1.05 reported by Tabata & Fujima (1991), both at the 
same Reynolds number. Stansby & Slaouti (1993) reported a value of CLmas x 0.3 
and 0.6 at Re = 60 and 180 respectively in their computation. The present result at 
Re = 1000 follows the correct trend that CLmaz increases with increasing Reynolds 
number according to available computed results in the literature. Comparisons of the 
behaviour of the lift and drag at small and large a shows that when a 6 1, the lift and 
drag coefficients show regular fluctuations with a constant amplitude except during the 
starting (transient) stage of the flow. It is clear that the periodic fluctuation is related 
to alternate vortex shedding as shown in figure 23(a-c). In the range 1 < c1 < 2, the 
lift and drag signals are still periodic but begin to exhibit some high-frequency content 
as shown in figure 23 (d).  This means that an unstable transition occurs before vortex 
shedding ceases to occur at a > 2. When a > 2, the lift and drag signals become non- 
periodic and they are shown in figure 23(e). 

It is interesting to note how the drag coefficient varies with a. When a = 0, the drag 
coefficient fluctuates at twice the frequency of the lift coefficient as expected. As a 
increases, one of the peaks of the drag coefficient fluctuation clearly decreases and 
disappears completely when a = 1 (figure 23c). At that stage the lift and drag forces 
fluctuate at the same frequency. The difference in amplitude of the drag coefficient is 
due to the difference in location of vortices in relation to the rear of the cylinder which 
also causes the mean lift coefficient to move away from zero. 

When a < 1, the higher the a, the shorter is the time required for the lift and drag 
forces to become periodic. When a > 1, however, as longer time is required for 
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periodicity to be established with increasing a, and a non-constant and generally 
damped amplitude of the forces is observed as in figure 23 (d) .  It is also seen from figure 
23 that the greatest contribution to the lift coefficient is given by the pressure forces: 
approximately 95 % for a = 0, 96 % for a = 0.5 and 99 YO for a = 3. The shear stress 
contribution to the drag coefficient is also small. 

4.6. The global characteristics of thejlow 
The shedding frequencies at various a are obtained from power spectra of the lift 
coefficients C,  (figure 24), and the variation of Strouhal number St with a is given in 
figure 25, where St = 21i7/17m. It is clearly seen that the vortex shedding frequency, or 
Strouhal number St increases with increasing a up to a = 2. At a = 3, more than one 
peak is seen in the power spectrum with no particularly dominant frequency. This 
indicates that, for a > 2, any vortex shed will be weak and the shedding is irregular. 

The increase in Strouhal number with increasing a up to a = 2 can be explained by 
the closer interaction between the two separated shear layers. It is evident in figure 
20 that the two separation locations draw closer together with increasing a. The closer 
interaction of the two shear layers results in early roll-up and shedding of vortices. This 
is supported by the vorticity contours plots at different t and a in figures 3, 6 ,  8 and 
10. 

The mean values of the lift and drag coefficients, C, and CD respectively, and their 
ratio are shown in figure 26. When a = 0, the estimated total mean drag coefficient, CD, 
is 1.14. This is in close agreement with the value of C, x 1.1 reported by some 
experimental researchers at the same Reynolds number. When a = 0.5, 1, 2, 3, 4 and 
6, the estimated total mean drag coefficients are 1.26, 1.36, 1.45, 2.8, 3.5 .and 3.92 
respectively. On the other hand, the estimated total mean lift coefficients at a = 0, 0.5, 
1,2, 3,4 and 6 are 0, -0.95, -2.38, -5.81, -7.82, -8.7 and -9.1 respectively. The 
lift coefficients determined by the present method are thus different from the results 
reported by Tokumaru & Dimotakis (1993) for Re = 3.8 x lo3 as the present coefficient 
never exceeds the limiting magnitude of 4n: proposed by Prandtl (1925). The present 
results indicate the presence of asymptotic values of lift and drag coefficients at high 
a, consistent with earlier observations that the flow structure and pressure distribution 
tend towards self-similarity at a > 2. The existence of a limiting C, is proposed by 
Prandtl based on theoretical analysis, and implies that the Magnus effect is only 
effective up to a certain a. Higher lift can only be generated if there is an increase in 
negative vortices being shed downstream with increasing a. The existence of a dividing 
closed streamline around the rotating circular cylinder seems to prevent this from 
happening. However, in a real flow, three-dimensional effects are present and Gortler 
or Taylor vortices in the re-circulating region enclosed by the dividing closed 
streamline may alter the limiting CL and C, phenomenon observed in the present 
flow. 

The lift coefficient increases at a faster rate than the drag coefficient as indicated by 
the lift to drag ratio which increases up to a = 2. Beyond a = 2, this ratio decreases 
slightly owing to the more rapid increase in drag. It seems that the optimum ratio 
(maximum in lCL/CDl) occurs at a x 2 when a closed streamline circulating around the 
cylinder begins to appear. The appearance of a closed streamline at a = 2 seems to 
form a demarcation line in the structure of the flow since beyond a = 2, the periodicity 
in both the lift and drag forces disappears, and the drag force increases at a faster rate 
than the lift force. 

Owing to viscous dissipation in the fluid, a moment about the axis of the cylinder is 
needed to do work in order to maintain its rotation. The relation between mean 
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moment and power coefficients C, and CN with a are shown in figure 27. The results 
show that the moment and power coefficients increase in magnitude with increasing a ;  
but the variation of the moment coefficient appears to approach an asymptotic value 
with further increase of a which again is consistent with previous argument of self- 
similarity. 

It is meaningful to plot ICLI and lCL/CD1 against C, in order to examine the 
economic feasibility of using the Magnus effect for lift generation. It is found from 
figure 28 that as C, increases, there is at first a fairly rapid rise in lCL/CDl, but after 
a maximum is reached at CN M 0.6, lCL/CDl decreases again and approaches an 
asymptotic value. Thus increasing power input beyond a certain level need not give rise 
to increasing lift force because of the presence of self-similarity in flow structure and 
pressure distribution. The usefulness of the Magnus effect in lift generation is thus 
limited. 
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5. Concluding remarks 
The flow development past a rotating circular cylinder at Re = 1000 is investigated 

by a new hybrid vortex method. The present numerical computation confirms the flow 
features in the near wake for the initial stage obtained in experiments and numerical 
studies conducted by other researchers. In addition, the present work also provides 
some important information on the flow in the far wake over a long period of time and 
at larger a, which is virtually unreported in the literature. It is found that the vortex 
shedding and wake development behind the cylinder vary significantly dependent on 
the magnitude of the rotational parameter a. As a increases, the vortex street behind 
the cylinder in the near wake inclines as a whole towards the direction of rotation while 
the stagnation point moves opposite to the direction of rotation. The time required for 
the first vortex to be shed decreases with increasing a when a < 1, and increases with 
increasing a when a > 1. However, the fluctuation created by alternate vortex shedding 
becomes weaker in the far wake. As time advances the secondary vortex appears 
periodically. At a = 0.5 and 1, it appears as a clockwise vortex on the lower side of the 
cylinder. However, at a = 3, this secondary clockwise vortex only appears during the 
initial stage of flow on the upper side of the cylinder and migrates to the front part of 
the cylinder and disappears as time progresses. The Karmhn vortex street structure 
begins to deteriorate as soon as the peripheral velocity becomes greater than twice the 
free-stream velocity and finally disappears for a > 3. 

The results predict a nearly linear variation of mean lift coefficient at low a, but it 
tapers off towards an asymptotic value at high a. Similarly, the dimensionless cylinder 
shedding frequency or Strouhal number increases with increasing a up to 01 = 2. The 
present results seem to indicate the existence of a critical a at about 2 when a closed 
streamline circulating around the cylinder begins to appear. Below this critical a, 
Khrman vortex shedding exists, separation points can be found, the mean lift and drag 
coefficients and Strouhal number increase almost linearly with a. Above a z 2,  the 
region enclosed by the dividing closed streamline grows in size, vortex shedding ceases, 
the flow structure, pressure and shear stress distributions around the cylinder tend 
towards self-similarity with increasing a, and lift and drag coefficients approach 
asymptotic values. The optimum lift to drag ratio (i.e. maximum in lC'JCD1) occurs at 
a = 2. The present investigation confirms Prandtl's postulation of the presence of 
limiting lift force at high a, and thus the usefulness of Magnus effect in lift generation 
is limited. 

The numerical results show that the present method is capable of satisfactorily 
predicting the flow characteristics in the vicinity of cylinder surface, such as flow 
separation, surface vorticity distribution and radial and tangential velocity variation, 
as well as the global flow features, such as periodic variations of the flow, lift and drag 
forces, vortex shedding and Strouhal number. When comparison is possible, the results 
of the present computations are found to be in good agreement with the experimental 
and numerical results obtained by other investigators. The present method can be used 
for numerical simulation of bluff body flow at much higher Reynolds number and may 
exhibit even greater merit in the case of three-dimensional calculations. 
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